

5 α -Reductases in Human Breast Carcinoma: Possible Modulator of *in Situ* Androgenic Actions*

TAKASHI SUZUKI, ANDREW D. DARTEL, JUN-ICHI AKAHIRA, NAOHIRO ARIGA, SAYAKA OGAWA, CHIKA KANEKO, JUNJI TAKEYAMA, TAKUYA MORIYA, AND HIRONOBU SASANO

Department of Pathology, Tohoku University School of Medicine (T.S., A.D.D., J.-I.A., S.O., C.K., J.T., H.S.), and Department of Pathology, Tohoku University Hospital (N.A., T.M.), Sendai 980-8575, Japan

ABSTRACT

The expression of 5 α -reductase types 1 and 2 was examined in human breast carcinoma using immunohistochemistry and RT-PCR. Immunoreactivity for 5 α -reductase isozymes was also correlated with various clinicopathological parameters to examine possible local regulatory mechanisms of sex steroids, including progesterone and androgens, in human breast carcinoma tissues. Immunoreactivity for 5 α -reductase type 1 was detected in the cytoplasm and possibly in the nuclear membrane of tumor cells in 35 of 60 invasive ductal carcinomas (58%), and type 2 signal was detected in 9 of these 60 cases (15%). The results from RT-PCR (n = 8) were consistent with those from immunohistochemistry. A significant positive correlation was detected between 5 α -reductase type 1 immunoreactivity and androgen and progesterone receptor A or B labeling indexes, and immu-

noreactivities of 5 α -reductase type 2, 17 β -hydroxysteroid dehydrogenase type 5, or 3 β -hydroxysteroid dehydrogenase, which recognizes both types I and II. An inverse correlation was detected between 5 α -reductase type 1 immunoreactivity and tumor size, histological grade, or Ki-67 labeling index. 5 α -Reductase type 2 immunoreactivity was significantly correlated with 17 β -hydroxysteroid dehydrogenase type 5 immunoreactivity, but not with other parameters. This study suggests that 5 α -reductase type 1 is mainly expressed in human breast carcinoma, which may play an important role in the *in situ* production and actions of the potent androgen, 5 α -dihydrotestosterone, including inhibition of cancer cell proliferation, in hormone-dependent human breast carcinoma. (*J Clin Endocrinol Metab* 86: 2250–2257, 2001)

BREAST CARCINOMA is one of the most common malignancies in women world-wide. It is well known that human breast tissue is a target for sex steroids, which play important roles in the development of hormone-dependent breast carcinomas (1, 2). Among the various sex steroids, estrogens contribute immensely to the growth of breast carcinoma through binding with the estrogen receptor (ER) (1, 2). In contrast, various previous *in vitro* studies have demonstrated that progesterone and androgens inhibit the proliferation of breast carcinoma cells via progesterone (PR) and androgen (AR) receptors, respectively (3–6). PR and AR have been shown to be expressed in the majority of breast carcinoma tissues (7, 8) and are considered to be important mediators of hormonal additive therapy, including progesterone and androgen, in human breast tumors (9, 10). However, the detailed mechanism of progesterone and androgen actions in human breast carcinoma tissues is largely unknown compared with that of estrogen actions.

5 α -Reductases catalyze the conversion of testosterone to the bioactive and potent androgen, 5 α -dihydrotestosterone

(DHT), and metabolize progesterone to 5 α -dihydroprogesterone (5 α DHP) (11). Therefore, 5 α -reductase expression is an important regulator of the local actions of androgens and progesterone. Two isoforms of 5 α -reductase have been cloned and characterized in mammals. The type 1 5 α -reductase is located on the distal short arm of chromosome 5 (11) and is mainly expressed in the liver and skin (12). Type 2 5 α -reductase is located in band p23 of chromosome 2 (13) and is expressed in the liver, prostate, seminal vesicle, and epididymis (12). Recently, several selective inhibitors of 5 α -reductase isozymes (e.g. MK-386 for type 1 and finasteride for type 2) have been developed and used in the treatment of androgen-dependent disorders, including skin and prostate pathologies (14). Therefore, it is very important to examine the expression of 5 α -reductase isozymes to obtain a better understanding of the role of 5 α -reductase and its regulation in various human tissues and their disorders. Enzymatic activity for 5 α -reductase has been demonstrated in both breast cancer cell lines (15) and breast cancer tissues themselves (16). 5 α -Reductase isozymes are considered to play important roles as local regulators of sex steroid actions in human breast carcinoma, similar to P450 aromatase, which is regulator of estrogen actions. However, the expression of 5 α -reductase isozymes has not been examined in breast carcinoma, and its biological significance remains unknown. Therefore, in this study we examined the expression of 5 α -reductase type 1 and type 2 in human breast carcinoma tissues using immunohistochemistry and RT-PCR. In addition, we statistically correlated the immunoreactivity of 5 α -reductase isozymes with various clinicopathological parameters in 60 cases of human breast carcinoma to study the

Received October 3, 2000. Revision received January 9, 2001. Accepted January 24, 2001.

Address all correspondence and requests for reprints to: Takashi Suzuki, M.D., Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryō-machi, Aoba-ku, Sendai, 980-8575, Japan. E-mail: t-suzuki@patholo2.med.tohoku.ac.jp.

* This work was supported by Grant-in-Aid for Cancer Research 7-1 from the Ministry of Health and Welfare, Japan; Grant-in-Aid for Scientific Research A-11137301 from the Ministry of Education, Science, and Culture, Japan; Grant-in-Aid for Scientific Research B-11470047 from the Japan Society for the Promotion of Science; and grants from the Naitou Foundation and the Suzuken Memorial Foundation.

possible role of 5 α -reductases in hormone-dependent breast cancer.

Materials and Methods

Patients and Tissues

Sixty specimens of invasive ductal carcinoma of the breast were obtained from women who underwent mastectomy from 1984–1987 at the Department of Surgery, Tohoku University Hospital (Sendai, Japan). Their mean age was 50.9 yr (range, 27–78). All patients examined in this study received neither irradiation nor chemotherapy before surgery. The clinical data, including patient age, menopausal status, stage according to International Union Against Cancer TNM classification (1987), tumor size, and lymph node status, were retrieved from the charts of the patients. The histological grade of each specimen was evaluated by three of the authors (T.S., N.A., and T.M.), based on the modified method of Bloom and Richardson (17) according to Elston and Ellis (18). The mean follow-up time was 107 months (range, 15–155). Disease-free survival data were available for all patients. All specimens were fixed with 10% formalin and embedded in paraffin wax at the Department of Pathology, Tohoku University Hospital.

Antibodies

5 α -Reductase type 1 and type 2 antibodies were rabbit polyclonal antibodies against a synthesized peptide corresponding to amino acids 232–256 for 5 α -reductase type 1 (12) and amino acids 227–251 for 5 α -reductase type 2 (12), respectively. These antibodies were provided by Dr. D. W. Russell (University of Texas Southwestern Medical Center, Dallas, TX). The polyclonal antibody for 17 β -hydroxysteroid dehydrogenase type 5 (17 β HSD5) was raised in rabbits against a synthetic peptide corresponding to amino acids 297–320 for 17 β HSD5 (19) and was provided by Dr. V. Luu-The (Laval University Hospital Center, Quebec, Canada). The characterization of these three antibodies was confirmed by Western blotting (12, 19), and use of antibodies for 5 α -reductase type 2 (20) and 17 β HSD type 5 (19) on immunohistochemistry has been previously reported. Polyclonal antibody for 3 β HSD was provided by Dr. J. I. Mason (University of Edinburgh, Edinburgh, UK). It was raised in rabbits against purified human placental 3 β HSD (21), and the immunoreactivity has also been demonstrated in human adrenals (22), indicating that this antibody detects both 3 β HSD types I and II (23). Monoclonal antibodies for AR (AR441), two isoforms of PR [PR-A (hPRa7) (24) and PR-B (hPRa2) (25)], ER (ER1D5), and Ki-67 (MIB1) were purchased from DAKO Corp. (Carpinteria, CA) NeoMarkers (Fremont, CA), NeoMarkers, Immunotech (Marseilles, France), and Immunotech, respectively. Rabbit polyclonal antibody for HER-2/neu (A0485) was obtained from DAKO Corp.

Immunohistochemistry

Immunohistochemical analysis was performed employing the streptavidin-biotin amplification method using a Histofine Kit (Nichirei, Tokyo, Japan) and has been previously described in detail (26). For immunostaining of AR, PR-A, PR-B, ER, Ki-67, and HER-2/neu, the slides were heated in an autoclave at 120°C for 5 min in citric acid buffer (2 mmol/L citric acid and 9 mmol/L trisodium citrate dehydrate, pH 6.0)

after deparaffinization for antigen retrieval. The dilutions of primary antibodies used in our study were as follows: 5 α -reductase type 1, 1:1000; 5 α -reductase type 2, 1:1000; AR, 1:100; PR-A, 1:150; PR-B, 1:150; ER, 1:2; 17 β HSD5, 1:1000; 3 β HSD, 1:1000; Ki-67, 1:50; and HER-2/neu, 1:200. The antigen-antibody complex was visualized with 3,3'-diaminobenzidine solution [1 mmol/L 3,3'-diaminobenzidine, 50 mmol/L Tris-HCl buffer (pH 7.6), and 0.006% H₂O₂] and counterstained with hematoxylin. Tissue sections of liver and prostate were used as positive controls for 5 α -reductase type 1 and type 2, respectively (12), and non-neoplastic breast tissue was used as a positive control for 17 β HSD type 5 (19). As a negative control, normal rabbit or mouse IgG was used instead of the primary antibodies, and no specific immunoreactivity was detected in these sections.

RT-PCR

RT-PCR analysis was performed on eight specimens of invasive ductal carcinoma. Total ribonucleic acid (RNA) was extracted from frozen breast carcinoma tissue samples using an RNeasy Total RNA isolation kit (QIAGEN, Hilden, Germany). RNA concentrations were determined spectrophotometrically. Total RNA (5 μ g) was denatured at 70°C for 10 min and was reverse transcribed in the presence of 25 ng/ μ L oligo(deoxythymidine)_{12–18} primer (Life Technologies, Inc., Tokyo, Japan), 2.5 mmol/L MgCl₂, 0.5 mmol/L deoxy-NTPs, 10 mmol/L dithiothreitol, and 10 U ribonuclease H[–] reverse transcriptase (Superscript II RT, Life Technologies, Inc., Tokyo, Japan) for 20 min at 23°C, 60 min at 42°C, and 15 min at 70°C. Subsequently, 1 μ L of the resulting complementary DNA (cDNA) was used as a template for PCR. The primer sequences used in this study (27–30) are listed in Table 1. PCR amplifications were performed in a final volume of 50 μ L in the presence of 20 mmol/L Tris-HCl (pH 8.4), 50 mmol/L KCl, 0.2 mmol/L deoxy-NTPs, 2 mmol/L MgCl₂, 0.8 μ mol/L of each primer, and 2.5 U Taq DNA polymerase (Life Technologies, Inc.). An initial denaturing step of 95°C for 2 min was followed by 40 cycles (AR and 5 α -reductase type 1 and type 2) and 30 cycles (β -actin), respectively, of 95°C for 1 min; 1-min annealing at 50°C (5 α -reductase type 1), 60°C (5 α -reductase type 2), 56°C (AR), and 58°C (β -actin); and a final extension for 2 min at 72°C. All PCR cycling was performed on a PTC-200 Peltier Thermal Cycler DNA Engine (MJ Research, Inc., Watertown, MA). After PCR, the products were resolved on a 2% agarose ethidium bromide gel. Images were captured with Polaroid (Hertfordshire, UK) film under UV transillumination. In initial experiments, after amplification PCR products were purified and subjected to direct sequencing (ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit and ABI Prism 310 Genetic Analyzer, Perkin-Elmer Corp. PE Applied Biosystems, Foster City, CA) to verify amplification of the correct sequences. As a positive control, frozen tissues of liver were used for 5 α -reductase type 1 and AR, and those of prostate were used for 5 α -reductase type 2. Negative control experiments lacked the cDNA substrate to check for the possibility of exogenous contaminant DNA. No amplified products were observed under these conditions.

Scoring of immunoreactivity

For statistical analyses of 5 α -reductase type 1 and type 2, 17 β HSD type 5, 3 β HSD, and HER-2/neu immunoreactivity, the carcinomas were classified into two groups (+, positive carcinoma cells; and –, no im-

TABLE 1. Primer sequences used in RT-PCR analysis

cDNA	Sequence	Position in cDNA	Size (bp)	Ref. no.
5 α -Reductase type 1	Forward 5'-TGGGAGGAGGAAAGCCTATG	347–366	308	Delos <i>et al.</i> (27)
	Reverse 5'-GCCACACCCTCCATGATTTC	654–634		
5 α -Reductase type 2	Forward 5'-CATACGGTTAGCTGGGTGT	456–476	315	Andersson <i>et al.</i> (28) ^a
	Reverse 5'-GCTTCCGAGATTGGGGTAG	750–770		
AR	Forward 5'-GTCAAAAGCGAAATGGGCC	Spans exons 2–3	420	Zhu <i>et al.</i> (29)
	Reverse 5'-CTTCTGGGTTGTCTCCTCAGT			
β -Actin	Forward 5'-GATTCCATGTGGCGACGAG	192–212	532	Willey <i>et al.</i> (30)
	Reverse 5'-CCATCTTGTCTCGAAGTCC	704–723		

^aOligonucleotide primers for 5 α -reductase type 2 were designed using the previously published cDNA sequence for human 5 α -reductase type 2 by Andersson *et al.* (28).

munoreactivity) by three of the authors (T.S., T.M., and N.A.) independently. Cases with discordant results among the observers were reevaluated. Scoring of AR, PR-A, PR-B, ER, and Ki-67 in carcinoma cells was performed on high power fields ($\times 400$) using a standard light microscope. In each case, more than 500 carcinoma cells were counted independently by these same three authors, and the percentage of immunoreactivity, *i.e.* labeling index (LI), was determined. In the present study interobserver differences were less than 5%, and the mean of the three values was obtained.

Statistical analysis

Values for patient age, tumor size, and LIs for AR, PR-A, PR-B, ER, and Ki-67 were presented as the mean \pm 95% confidence interval (95% CI), and associations between the immunoreactivity of 5 α -reductases and these parameters were evaluated using a Bonferroni test. Statistical differences between immunoreactivity for 5 α -reductases and meno-pausal status, stage, lymph node status, histological grade, and immunoreactivity for 17 β HSD5, 3 β HSD, and HER-2/neu were evaluated in a cross-table using the χ^2 test. $P < 0.05$ was considered significant. Overall and disease-free survival analyses were calculated according to the Kaplan-Meier test. The statistical significance of differences in the survival analyses was calculated using the log-rank test.

Results

Immunohistochemistry

Immunoreactivity for 5 α -reductase type 1 and type 2 was detected in the cytoplasm and possibly in the nuclear membrane of carcinoma cells (Fig. 1, A and B). The number of positive cases and percentages were 35 of 60 cases (58.3%) for 5 α -reductase type 1, and 9 of 60 cases (15.0%) for 5 α -reductase type 2, respectively. Immunoreactivity for 5 α -reductase type 1 and type 2 was focally detected in morphologically normal glandular epithelia adjacent to the carcinoma. To examine the possible effects of long-term storage of the samples on immunoreactivity of 5 α -reductases, we performed immunohistochemistry for 5 α -reductase types 1 and 2 in 12 invasive ductal carcinomas collected within 1 yr. Immunoreactivity for 5 α -reductase type 1 and type 2 was detected in 8 of 12 (66.7%) and 3 of 12 (25.0%), respectively.

Immunoreactivity for AR (Fig. 1C), PR-A, PR-B, and ER was detected in the nuclei of carcinoma cells, and the number of positive cases and percentages were 49 of 60 (81.7%), 33 of

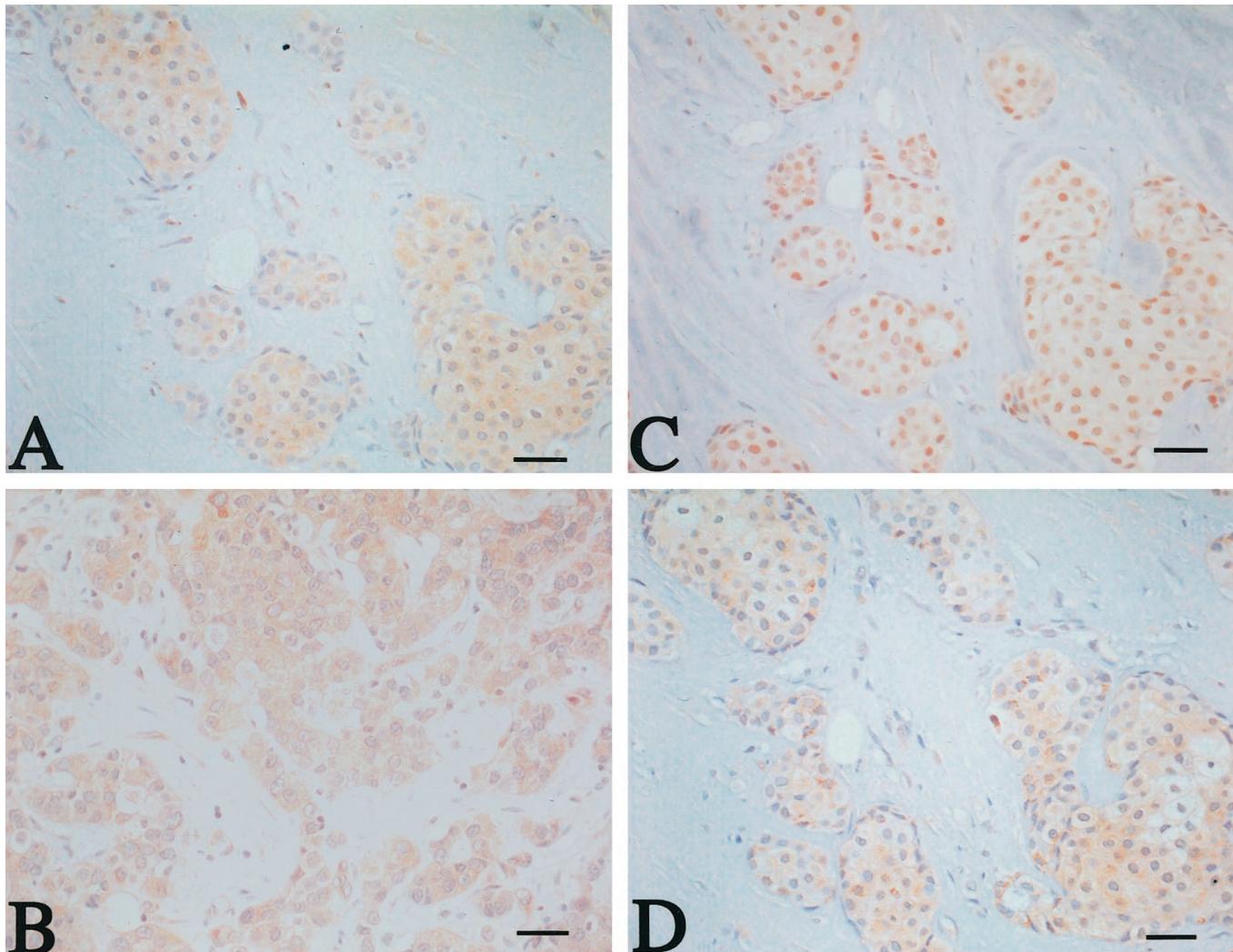


FIG. 1. Immunohistochemistry for 5 α -reductase type 1 (A) and type 2 (B), AR (C), and 17 β HSD type 5 (D) in invasive ductal carcinoma. Immunoreactivity of 5 α -reductase type 1 (A) and type 2 (B), and 17 β HSD type 5 (D) was detected in the cytoplasm of carcinoma cells, whereas that of AR (C) was detected in the nucleus of carcinoma cells. The same field as A, C, and D. Original magnification, $\times 140$. Bar, 50 μ m.

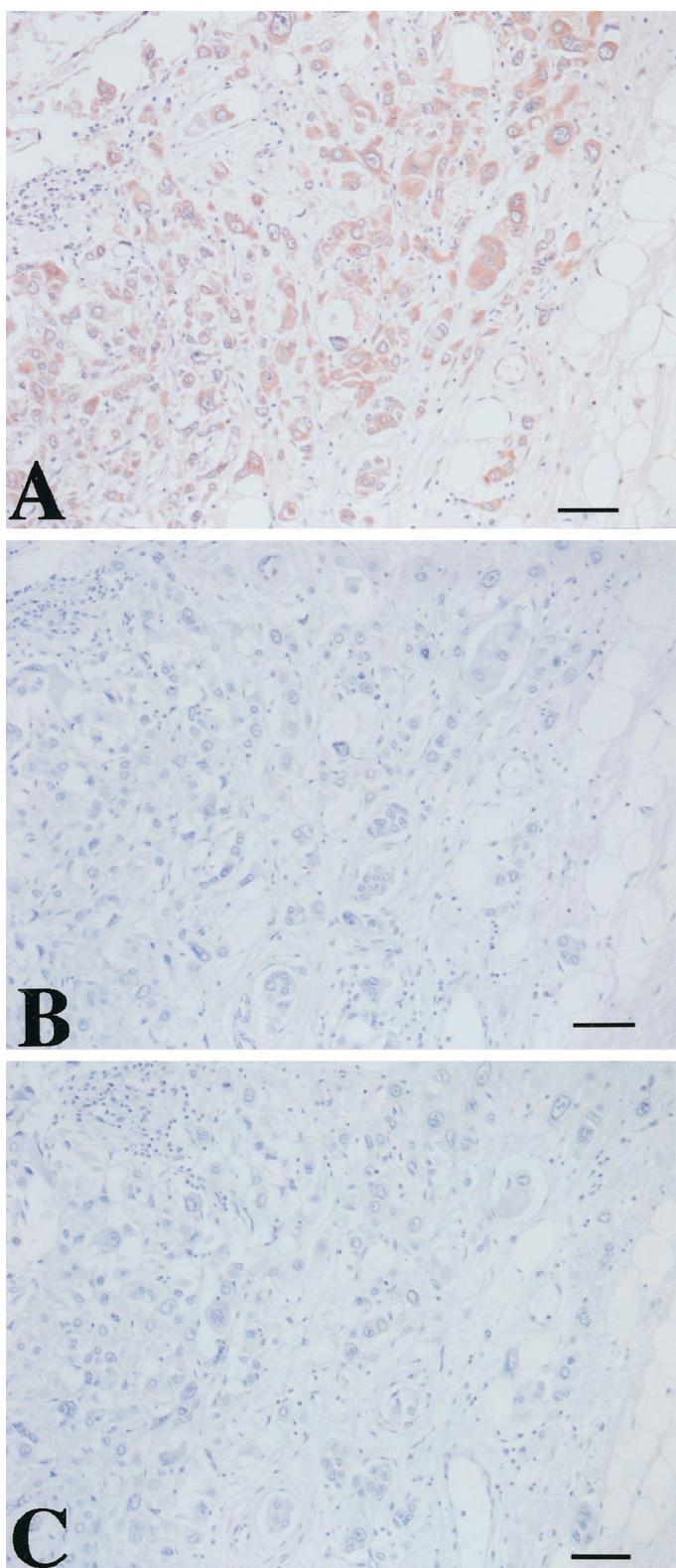


FIG. 2. Immunohistochemistry for 3 β HSD in invasive ductal carcinoma. Immunoreactivity for 3 β HSD (A) was detected in the cytoplasm of carcinoma cells. Immunoreactivity for 5 α -reductase type 1 (B) and type 2 (C) was not detected in this case. Same field. Original magnification, $\times 140$. Bar, 50 μ m.

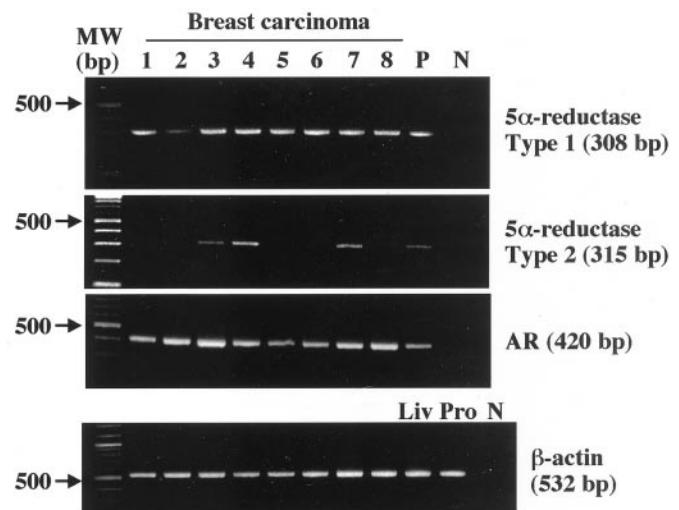


FIG. 3. RT-PCR analysis for 5 α -reductase type 1 and type 2 and AR in eight invasive ductal carcinomas. mRNA expression for 5 α -reductase type 1 and 2, AR, and β -actin were detected as a specific single band (308 bp for 5 α -reductase type 1, 315 bp for 5 α -reductase type 2, 420 bp for AR, and 532 bp for β -actin). mRNA expression was detected in eight of eight cases for 5 α -reductase type 1, three (cases 3, 4, and 7) of eight cases for 5 α -reductase type 2, and eight of eight cases for AR. P, Positive controls (liver for 5 α -reductase type 1 and AR, and prostate for 5 α -reductase type 2); Liv, liver; Pro, prostate; N, negative control (no cDNA substrate).

60 (55%), 38 of 60 (63.3%), and 51 of 60 (85.0%), respectively. Immunoreactivity for 17 β HSD type 5 was detected in cytoplasms of carcinoma cells (Fig. 1D) in 37 of 60 cases (61.7%) examined. Immunoreactivity for 17 β HSD5 was also detected in the cytoplasms of morphologically normal glandular epithelial cells and some stromal cells adjacent to the carcinoma, as reported previously (19). 3 β HSD immunoreactivity was detected in the cytoplasms of carcinoma cells in 32 cases (53.3%; Fig. 2). Ki-67 immunoreactivity was detected in the nuclei of carcinoma cells as well as some stromal cells in all cases examined. HER-2/neu immunoreactivity was detected in membranes of carcinoma cells in 27 of 60 cases (45%) in this study.

RT-PCR

As shown in Fig. 3, messenger RNA (mRNA) expression for 5 α -reductase type 1 and type 2 and AR was detected as a specific single band (308 bp for 5 α -reductase type 1, 315 bp for 5 α -reductase type 2, and 420 bp for AR) in eight of three (100%), three of eight (37.5%), and eight of eight (100%) cases, respectively. The results of RT-PCR analyses in each case were consistent with those of immunohistochemistry.

Correlation between 5 α -reductases and clinicopathological parameters

The results of correlation between 5 α -reductases and clinicopathological parameters are summarized in Table 2. As shown in Table 2A, a significant inverse correlation was detected between 5 α -reductase type 1 immunoreactivity and tumor size ($P = 0.043$) or histological grade of the carcinoma tissue ($P = 0.013$). There was, however, no significant correlation between 5 α -reductase type 1 immunoreactivity and

TABLE 2A. Correlation between 5 α -reductase type 1 immunoreactivity and clinicopathological parameters in human breast carcinomas

	5 α -Reductase type 1 immunoreactivity		P value
	+(n = 35)	-(n = 25)	
Age* (yr)	49.1 \pm 4.1	53.6 \pm 3.7	NS
Menopausal status			
Premenopausal	23 (38.3)	11 (18.3)	
Postmenopausal	12 (20.0)	14 (23.3)	NS
Stage			
I	10 (17.0)	3 (5.1)	
II	17 (28.8)	18 (30.5)	
III	6 (10.2)	3 (5.1)	
IV	1 (1.7)	1 (1.7)	NS
Tumor size (mm)	24.1 \pm 4.6	31.4 \pm 6.1	0.043
Lymph node status			
n, +	19 (31.7)	16 (26.7)	
n, -	16 (26.7)	9 (15.0)	NS
Histological grade			
I	10 (16.7)	2 (3.3)	
II	14 (23.3)	6 (10.0)	
III	11 (18.3)	17 (28.3)	0.013

Data for age and tumor size are presented as the mean \pm 95% confidence interval. All other values represent the number of cases and their respective percentages (in parentheses).

TABLE 2B. Correlation between 5 α -reductase type 2 immunoreactivity and clinicopathological parameters in human breast carcinomas

	5 α -Reductase type 2 immunoreactivity		P value
	+(n = 9)	-(n = 51)	
Age* (yr)	51.1 \pm 9.1	50.9 \pm 2.9	NS
Menopausal status			
Premenopausal	4 (6.7)	30 (50.0)	
Postmenopausal	5 (8.3)	21 (35.0)	NS
Stage			
I	3 (5.1)	10 (16.9)	
II	6 (10.2)	29 (49.2)	
III	0 (0.0)	9 (15.3)	
IV	0 (0.0)	2 (3.4)	NS
Tumor size (mm)	21.4 \pm 4.7	28.3 \pm 4.0	NS
Lymph node status			
n, -	3 (5.0)	19 (31.7)	
n, +	6 (10.0)	32 (53.3)	NS
Histological grade			
I	3 (5.0)	9 (15.0)	
II	2 (3.3)	18 (30.0)	
III	4 (6.7)	24 (40.0)	NS

Data for age and tumor size are presented as the mean \pm 95% confidence interval. All other values represent the number of cases and their respective percentages (in parentheses).

patient age, menopausal status, stage, or lymph node status. 5 α -Reductase type 2 immunoreactivity was not significantly correlated with any clinicopathological parameters examined in this study (Table 2B).

Correlation between 5 α -reductases and steroid receptors and enzymes

The results of correlation between 5 α -reductase type 1 and immunohistochemical parameters are summarized in Table 3A. There was a strong correlation between 5 α -reductase type 1 immunoreactivity and AR LI ($P = 0.0026$). A signif-

TABLE 3A. Correlation between 5 α -reductase type 1 immunoreactivity and immunohistochemical parameters in human breast carcinomas

	5 α -Reductase type 1 immunoreactivity		P value
	+(n = 35)	-(n = 25)	
5 α -Reductase type 2 immunoreactivity			
+	8 (13.3)	1 (1.7)	
-	27 (45.0)	24 (40.0)	0.030
AR LI	44.3 \pm 10.9	22.1 \pm 9.2	0.0026
PR-A LI	24.2 \pm 12.6	9.3 \pm 7.7	0.039
PR-B LI	33.8 \pm 14.4	16.1 \pm 10.2	0.042
ER LI	45.4 \pm 11.8	29.0 \pm 18.5	NS
17 β HSD type 5 immunoreactivity			
+	27 (45.0)	10 (16.7)	
-	8 (13.3)	15 (25.0)	0.0034
3 β -HSD immunoreactivity			
+	23 (38.3)	9 (13.3)	
-	12 (16.3)	16 (11.7)	0.023
Ki-67 LI	26.4 \pm 4.8	37.5 \pm 8.7	0.020
HER-2/neu immunoreactivity			
+	14 (23.3)	13 (21.7)	
-	21 (35.0)	12 (20.0)	NS

Data for age and tumor size are presented as the mean \pm 95% confidence interval. All other values represent the number of cases and their respective percentages (in parentheses).

TABLE 3B. Correlation between 5 α -reductase type 2 immunoreactivity and immunohistochemical parameters in human breast carcinomas

	5 α -Reductase type 2 immunoreactivity		P value
	+(n = 9)	-(n = 51)	
AR LI	44.1 \pm 25.7	33.6 \pm 7.7	NS
PR-A LI	17.4 \pm 23.8	17.4 \pm 8.2	NS
PR-B LI	27.4 \pm 27.7	25.4 \pm 9.4	NS
ER LI	31.9 \pm 27.4	39.7 \pm 8.5	NS
17 β HSD type 5 immunoreactivity			
+	9 (15.0)	28 (46.7)	
-	0 (0.0)	23 (38.3)	0.010
3 β -HSD immunoreactivity			
+	7 (11.7)	25 (41.7)	
-	2 (3.3)	26 (43.3)	NS
Ki-67 LI	29.0 \pm 16.6	31.4 \pm 4.9	NS
HER-2/neu immunoreactivity			
+	3 (5.0)	24 (40.0)	
-	6 (10.0)	27 (45.0)	NS

Data for age and tumor size are presented as the mean \pm 95% confidence interval. All other values represent the number of cases and their respective percentages (in parentheses).

icant positive correlation was also detected between 5 α -reductase type 1 immunoreactivity and 5 α -reductase type 2 immunoreactivity ($P = 0.030$), PR-A LI ($P = 0.039$), PR-B LI ($P = 0.042$), 17 β HSD type 5 immunoreactivity ($P = 0.0034$), and 3 β HSD immunoreactivity ($P = 0.023$). There was a significant inverse correlation between 5 α -reductase type 1 immunoreactivity and Ki-67 LI ($P = 0.020$). The results of correlation between 5 α -reductase type 2 and these parameters

above are summarized in Table 3B. 5 α -Reductase type 2 immunoreactivity was significantly correlated with 17 β HSD type 5 immunoreactivity ($P = 0.010$), but other significant correlations were not detected in this study.

Correlation between 5 α -reductases and prognosis

No significant correlation was detected between 5 α -reductase type 1 or type 2 immunoreactivity and overall or disease-free survival in the 60 invasive ductal carcinomas investigated in this study.

Discussion

In this study immunoreactivity for 5 α -reductase type 1 was detected in carcinoma cells in 35 of 60 human breast carcinomas (58.3%), whereas that of 5 α -reductase type 2 was detected in carcinoma cells in 9 of 60 cases (15.0%) examined. Activity of 5 α -reductase has previously been demonstrated in various human breast carcinoma cell lines (15, 31), and Wiebe *et al.* (16) reported that 5 α -reductase activity was 4–8 times elevated in breast cancer tissues compared with that in nontumorous breast tissues. Results from our present study are consistent with these previous reports and suggest that type 1 5 α -reductase is mainly expressed in carcinoma cells of human breast carcinoma tissues. Immunoreactivity for 5 α -reductase types 1 and 2 was detected in the cytoplasm and possibly in the nuclear membrane in this study. These findings are consistent with previous reports that describe both of these antigens as being integral membrane proteins localized to the endoplasmic reticulum and the contiguous nuclear membrane (11). However, further investigations, including ultrastructural immunohistochemistry, are required to study the precise subcellular localization of 5 α -reductase type 1 and type 2 in human breast carcinoma cells.

In this study 5 α -reductase type 1 immunoreactivity was significantly correlated with AR LI ($P = 0.0026$), which suggests that 5 α -reductase type 1 plays an important role in the regulation of local androgenic actions. Previously, Isola (8) reported that 79% of breast carcinomas expressed AR, suggesting that androgenic actions are present in human breast carcinoma tissues. Physiological concentrations of potent androgens such as DHT were very low in normal woman (32–34) and in breast cancer patients (35). However, Recchione *et al.* (36) demonstrated that DHT concentrations were significantly higher (3-fold increase; $P = 0.0001$) in breast cancer tissues than in plasma and suggested the possible local production of DHT in human breast carcinoma tissues. Recently, 17 β HSD type 5, which specifically catalyzes the reduction of androstenedione to testosterone, was cloned by Dufort *et al.* (37). 17 β HSD type 5 is expressed in various peripheral tissues, including the breast (19), and El-Alfy (38) proposed possible *in situ* production of DHT from the inactive adrenal precursor dehydroepiandrosterone (DHEA) by 3 β HSD (conversion from DHEA to androstenedione), 17 β HSD type 5 (reduction of androstenedione to testosterone), and 5 α -reductases (metabolism of testosterone to DHT) in various peripheral tissues. Previous studies have reported the presence of 3 β HSD activity in breast carcinoma tissues (39) and that of 17 β HSD activity in breast carcinoma cell lines (31) in addition to 5 α -reductase activity in human breast

carcinoma tissues (16). An immunohistochemical study of 3 β HSD in breast carcinoma cells has been previously reported by Sasano *et al.* (40), but that of 17 β HSD type 5 or 5 α -reductases has not been examined. In this study immunoreactivity for 3 β HSD and 17 β HSD type 5 was detected in carcinoma cells in 32 (53.3%) and 37 (61.7%) of 60 invasive ductal carcinomas, respectively, and immunoreactivity for 5 α -reductase type 1 was correlated with that of 3 β HSD ($P = 0.023$) or 17 β HSD type 5 ($P = 0.0034$) immunoreactivity. Therefore, the results of our study suggest that DHT is locally produced by 3 β HSD, 17 β HSD type 5, and 5 α -reductase type 1 in carcinoma cells and acts on these cells locally via AR in human breast carcinoma tissues.

There was a significant inverse correlation between 5 α -reductase type 1 immunoreactivity and Ki-67 LI ($P = 0.020$) or tumor size ($P = 0.043$) in this study. Monoclonal antibody Ki-67 has been demonstrated to recognize cells in all phases of the cell cycle except the G₀ (resting) phase (41), and Ki-67 LI is well recognized to be a useful factor to evaluate the proliferative activity of various neoplastic tissues, including breast carcinoma (42). Previous *in vitro* studies have demonstrated that DHT inhibited the basal and estrogen-induced cell proliferation in human breast cancer cell lines through actions on AR, and this effect occurred at physiological concentrations (4, 6). Our present findings are in good agreement with these previous *in vitro* studies mentioned above and suggest that 5 α -reductase type 1 locally induces DHT production and results in a relatively low proliferation rate in human breast carcinoma. 5 α -Reductase type 1 immunoreactivity was also inversely correlated with histological grade ($P = 0.013$). Therefore, breast carcinomas positive for 5 α -reductase type 1 are considered to be relatively well differentiated and may maintain some hormonal regulatory mechanisms. Administration of androgens has been reported to result in the regression of some cases of breast carcinoma, but also to cause androgenic side-effects (5). Therefore, induction of 5 α -reductase type 1 may be effective, with fewer side-effects, in the treatment of breast carcinomas as one possible endocrine therapy.

Recent studies have demonstrated that the bioactive estrogen, estradiol, was produced locally in breast carcinoma tissues. P450 aromatase converts androstenedione to estrone and testosterone to estradiol. Enzymatic activity of aromatase has been demonstrated in human breast carcinoma tissues (43), and aromatase immunolocalization has been reported in stromal cells of breast carcinoma tissues (40). Immunoreactivity for 17 β HSD type 1, which catalyzes the conversion of estrone to estradiol, has been reported in carcinoma cells in breast carcinoma tissues (44–46) and has been correlated with ER LI (46). AR-positive breast carcinomas are frequently positive for ER (8), and thus, it is reasonable to observe a strong correlation between AR and ER LIs ($r = 0.400$; $P = 0.0015$) in this study. Therefore, 17 β HSD type 5 and 5 α -reductases may act to increase DHT production through competition with aromatase of estrogen production in hormone-dependent breast carcinomas (Fig. 4).

Previous studies have reported that progesterone exerts a direct antiproliferative effect (3, 5) and abolishes the stimulatory effects of estradiol on the growth of breast cancer cells

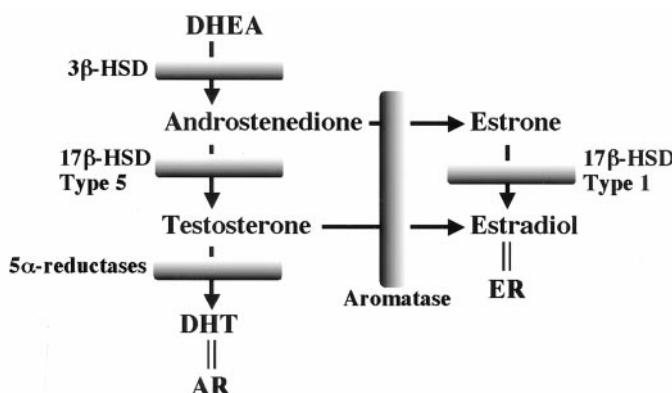


FIG. 4. Flow chart illustrating the possible cascade of local production of androgens and estrogens in human breast carcinoma. DHT is locally produced from the inactive adrenal precursor DHEA by 3 β HSD (conversion from DHEA to androstenedione), 17 β HSD type 5 (reduction of androstenedione to testosterone), and 5 α -reductases (metabolism of testosterone to DHT) and acts on the carcinoma cells through the AR. On the other hand, estradiol is locally produced by aromatase (conversion from androstenedione to estrone and from testosterone to estradiol) and 17 β HSD type 1 (conversion of estrone to estradiol) and binds to ER in the carcinoma cells.

(5). Progesterone actions are mediated via two isoforms of PR, PR-A (81–83 kDa) and PR-B (116–120 kDa). PR is present in approximately 60% of breast carcinoma tissues (7), and the presence of PR is an important indicator of the responsiveness to endocrine agents in human breast carcinoma (10). Recently, Wiebe *et al.* (16) demonstrated that progesterone metabolites to 5 α DHP and 3 α -hydroxyprogesterone (3 α -HP) by 5 α -reductase and 3 α -hydroxysteroid oxidoreductase, respectively, and the ratio of 5 α DHP/3 α -HP was nearly 30-fold higher in tumorous than in nontumorous breast tissues using enzymatic assay. They also reported that 5 α DHP stimulated, whereas 3 α -HP inhibited, the proliferation and detachment of breast cell lines *in vitro*. These previous findings above suggest that 5 α -reductase may decrease the biological actions of progesterone, including the antiproliferative effect. However, in this study, 5 α -reductase type 1 immunoreactivity was correlated with PR-A and PR-B LIs ($P = 0.039$ and $P = 0.042$, respectively), and inversely correlated with Ki-67 LI ($P = 0.020$) or tumor size ($P = 0.043$). Therefore, evidence of regulation of progesterone action by 5 α -reductases could not be verified. This may partly be due to the concentration of progesterone being lower than that of DHT, which may be locally produced in human breast carcinoma tissues. However, studies are required to confirm these speculations.

In summary, we demonstrated that 5 α -reductase type 1 is mainly expressed in human breast carcinomas by immunohistochemistry and RT-PCR. Immunoreactivity for 5 α -reductase type 1 was significantly correlated with AR, PR-A or PR-B LI, and 5 α -reductase type 2, 17 β HSD type 5, or 3 β HSD immunoreactivity and was inversely correlated with tumor size, histological grade, or Ki-67 LI. Our present data suggest that 5 α -reductase type 1 plays an important role in the regulation of *in situ* DHT production and actions, including the inhibition of cancer cell proliferation, in hormone-dependent breast carcinomas.

Acknowledgment

We appreciate the skillful technical assistance of Ms. Kumiko Hidaka, Department of Pathology, Tohoku University School of Medicine.

References

1. Thomas DB. 1984 Do hormones cause cancer? *Cancer*. 53:595–604.
2. Vihko R, Apter D. 1989 Endogenous steroids in the pathophysiology of breast cancer. *CRC Crit Rev Oncol Hematol*. 9:1–16.
3. Horwitz KB, Freidenberg GR. 1985 Growth inhibition and increase of insulin receptors in antiestrogen-resistant T47D_{CO} human breast cancer cells by progestins: implications for endocrine therapies. *Cancer Res*. 45:167–173.
4. Poulin R, Baker D, Labrie F. 1988 Androgens inhibit basal and estrogen-induced cell proliferation in the ZR-75-1 human breast cancer cell line. *Breast Cancer Res Treat*. 12:213–225.
5. Santen RJ, Manni A, Harvey H, Redmond C. 1990 Endocrine treatment of breast cancer in women. *Endocr Rev*. 11:221–265.
6. Adams JB. 1988 Adrenal androgens and human breast cancer: a new appraisal. *Breast Cancer Res Treat*. 51:183–188.
7. Allred DC, Harvey JM, Berardo M, Clark GM. 1998 Prognostic and predictive factors in breast cancer by immunohistochemical analysis. *Mod Pathol*. 11:155–168.
8. Isola JJ. 1993 Immunohistochemical demonstration of androgen receptor in breast cancer and its relationship to other prognostic factors. *J Pathol*. 170:31–35.
9. Bryan RM, Mercer RJ, Bennett RC, Rennie GC, Lie TH, Morgan FJ. 1984 Androgen receptors in breast cancer. *Cancer*. 54:2436–2440.
10. Graham JD, Yeates C, Balleine RL, et al. 1996 Progesterone receptor A and B protein expression in human breast cancer. *J Steroid Biochem Mol Biol*. 56:93–98.
11. Russell DW, Wilson JD. 1994 Steroid 5 α -reductase: two genes/two enzymes. *Annu Rev Biochem*. 63:25–61.
12. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, Russell DW. 1993 Tissue distribution and ontogeny of steroid 5 α -reductase isozyme expression. *J Clin Invest*. 92:903–910.
13. Thigpen AE, Davis DL, Milatovich A, et al. 1992 Molecular genetics of steroid 5 α -reductase 2 deficiency. *J Clin Invest*. 90:799–809.
14. Chen W, Zouboulis ChC, Orfanos CE. 1996 The 5 α -reductase system and its inhibitors. *Dermatology*. 193:177–184.
15. Perel E, Danilescu D, Kharlip L, Blackstein ME, Killinger DW. 1985 The relationship between growth and androstenedione metabolism in four cell lines of human breast carcinoma cells in culture. *Mol Cell Endocrinol*. 41:197–203.
16. Wiebe JP, Muzia D, Hu J, Szwajcer D, Hill SA, Seachrist JL. 2000 The 4-pregnene and 5 α -pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. *Cancer Res*. 60:936–943.
17. Bloom HJG, Richardson WW. 1957 Histological grading and prognosis in breast cancer. A study of 1409 cases of which 359 have been followed for 15 years. *Br J Cancer*. 11:359–377.
18. Elston CW, Ellis IO. 1991 Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer. Experience from a large study with long-term follow-up. *Histopathology*. 19:403–410.
19. Pelletier G, Luu-The V, Tetu B, Labrie F. 1999 Immunocytochemical localization of type 5 17 β -hydroxysteroid dehydrogenase in human reproductive tissues. *J Histochem Cytochem*. 47:731–738.
20. Silver RI, Wiley EL, Thigpen AE, Guileyardo JM, McConnell JD, Russell DW. 1994 Cell type specific expression of steroid 5 α -reductase 2. *J Urol*. 152:438–442.
21. Lorence MC, Murry BA, Trant JM, Mason JI. 1990 Human 3 β -hydroxysteroid dehydrogenase/ Δ^5, Δ^4 -isomerase from placenta: expression in non-steroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. *Endocrinology*. 126:2493–2498.
22. Sasano H, Mason JI, Sasano N, Nagura H. 1990 Immunolocalization of 3 β -hydroxysteroid dehydrogenase in human adrenal cortex and its disorders. *Endocr Pathol*. 1:94–101.
23. Labrie F, Simard J, Luu-The V, et al. 1992 Structure and tissue-specific expression of 3 β -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. *J Steroid Biochem Mol Biol*. 41:421–435.
24. Mote PA, Balleine RL, McGowan EM, Clarke CL. 1999 Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. *J Clin Endocrinol Metab*. 84:2963–2971.
25. Clarke CL, Zaino RJ, Feil PD, et al. 1987 Monoclonal antibodies to human progesterone receptor: characterization by biochemical and immunohistochemical techniques. *Endocrinology*. 121:1123–1132.
26. Suzuki T, Sasano H, Kimura N, et al. 1994 Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. *Hum Reprod*. 9:1589–1595.

27. Delos S, Carsol JL, Fina F, Raynaud JP, Martin PM. 1998 5 α -Reductase and 17 β -hydroxysteroid dehydrogenase expression in epithelial cells from hyperplastic and malignant human prostate. *Int J Cancer.* 75:840–846.

28. Andersson S, Berman DM, Jenkins EP, Russell DW. 1991 Deletion of steroid 5 α -reductase 2 gene in male pseudohermaphroditism. *Nature.* 354:159–161.

29. Zhu X, Daffada AAI, Chan CMW, Dowsett M. 1997 Identification of an exon 3 deletion splice variant androgen receptor mRNA in human breast cancer. *Int J Cancer.* 72:574–580.

30. Willey JC, Crawford EL, Jackson CM, et al. 1998 Expression measurement of many genes simultaneously by quantitative RT-PCR using standardized mixtures of competitive templates. *Am J Respir Cell Mol Biol.* 19:6–17.

31. MacIndoe JH, Woods GR. 1981 Steroid-metabolizing enzymes in human breast cancer cells. II. 5 α -Reductase, 3 α -hydroxysteroid oxidoreductase, and 17 β -hydroxysteroid oxidoreductase. *Endocrinology.* 108:1407–1413.

32. Cheng Y, Prusoff WH. 1973 Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. *Biochem Pharmacol.* 22:3099–3108.

33. Abraham GE. 1974 Ovarian and adrenal contribution to peripheral androgens during the menstrual cycle. *J Clin Endocrinol Metab.* 39:340–346.

34. Vermeulen A, Verdonck L. 1979 Factors affecting sex hormone levels in postmenopausal women. *J Steroid Biochem.* 11:899–904.

35. Mistry P, Griffiths K, Maynard PV. 1986 Endogenous C₁₉-steroids and oestradiol levels in human primary breast tumour tissues and their correlation with androgen and oestrogen receptors. *J Steroid Biochem.* 24:1117–1125.

36. Recchione C, Venturelli E, Manzari A, Cavalleri A, Martinetti A, Secreto G. 1995 Testosterone, dihydrotestosterone and oestradiol levels in postmenopausal breast cancer tissues. *J Steroid Biochem Mol Biol.* 52:541–546.

37. Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V. 1999 Characteristics of a highly labile human type 5 17 β -hydroxysteroid dehydrogenase. *Endocrinology.* 140:568–574.

38. El-Alfy M, Luu-The V, Huang XF, Berger L, Labrie F, Pelletier G. 1999 Localization of type 5 17 β -hydroxysteroid dehydrogenase, 3 β -hydroxysteroid dehydrogenase, and androgen receptor in the human prostate by *in situ* hybridization and immunocytochemistry. *Endocrinology.* 140:1481–1491.

39. Gunasegaram R, Peh KL, Loganath A, Ratnam SS. 1998 Expression of 3 β -hydroxysteroid dehydrogenase-5,4-en isomerase activity by infiltrating ductal human breast carcinoma *in vitro*. *Breast Cancer Res Treat.* 50:117–123.

40. Sasano H, Nagura H, Harada N, Goukon Y, Kimura M. 1994 Immunolocalization of aromatase and other steroidogenic enzymes in human breast disorders. *Hum Pathol.* 25:530–535.

41. Gerdes J, Schwab U, Lemke H, Stein H. 1983 Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. *Int J Cancer.* 31:13–20.

42. Veronese SM, Gambacorta M, Gottardi O, Scanzi F, Ferrari M, Lampertico P. 1993 Proliferation index as a prognostic marker in breast cancer. *Cancer.* 71:3926–3931.

43. Miller WR, Hawkins RA, Forrest AM. 1982 Significance of aromatase activity in human breast cancer. *Cancer Res.* 42:3365–3368.

44. Poutanen M, Isomaa V, Lehto VP, Vihko R. 1992 Immunohistochemical analysis of 17 β -hydroxysteroid dehydrogenase in benign and malignant human breast tissue. *Int J Cancer.* 50:386–390.

45. Sasano H, Frost AR, Saitoh R, et al. 1996 Aromatase and 17 β -hydroxysteroid dehydrogenase type 1 in human breast carcinoma. *J Clin Endocrinol Metab.* 81:4042–4046.

46. Suzuki T, Moriya T, Ariga N, Kaneko C, Kanazawa M, Sasano H. 2000 17 β -Hydroxysteroid dehydrogenase type 1 and type 2 in human breast carcinoma: a correlation to clinicopathological parameters. *Br J Cancer.* 82: 524–528.